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Abstract

Artuc, Chauhuri and McLaren (forthcoming) propose a new Euler-equation based

method for estimating labor mobility to study welfare effects of trade liberalization. In

this paper, we compare their method with a more conventional maximum likelihood

based estimator to illustrate pros and cons of both methods using simulated data.

We find that maximum likelihood based estimator is more efficient but requires value

functions to be calculated accurately. However, it is not possible to calculate value

functions accurately when sample is short or if future values fluctuate because of an

expected policy change or an aggregate shock. The new Euler-equation based method,

although less efficient, does not require calculation of value functions and is more

reliable. We also show that qualitative results of policy simulations are very robust

under different estimation scenarios.
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One of the main concerns of policy makers is to understand how import competing sector

workers are affected from trade liberalization. It is very useful to know how much exporting

sector workers will benefit and how much import competing sector workers will be hurt, so

that it may be possible to design policies that will be popular among workers. If policy

makers know how mobile workers are, they can predict how quickly workers will find new

jobs in other sectors if they lose their current jobs. The cost of switching sectors directly

affect how the gains from trade are distributed. Also when there is a large scale public sector

downsizing, mobility cost of workers will affect how much workers, who lose their jobs, will

be hurt after the new policy.

A new method was recently introduced for estimating these costs based on a dynamic

rational-expectations model of labor adjustment, and for using these estimates in policy sim-

ulations to try and assess exactly these distributional impacts of policy. The approach has

been developed in a number of papers by Cameron, Chaudhuri, and McLaren (2007), Chaud-

huri and McLaren (2007) and Artuç, Chaudhuri and McLaren (2007, 2008, forthcoming).

The method can be summarized as follows. First, specify a model of the labor market for the

whole economy in which each period each worker has the opportunity to switch sectors, but

at a cost, which varies for each worker over time according to a distribution whose parame-

ters are to be estimated. (The time-varying idiosyncratic costs allow for gradual reallocation

of workers to a shock, and they also allow for anticipatory reallocation to an expected future

shock, both of which are important features of real-world labor adjustment.) Second, derive

from this model an equilibrium condition analogous to an Euler equation, which can then be

brought to the data to estimate the underlying parameters of the distribution of idiosyncratic

moving-cost shocks. Third, estimate those parameters by fitting this equilibrium condition

to data on gross flows of workers and wages, across sectors of the economy and across time.

Fourth, use these estimated parameters to simulate policy experiments.

To implement this method, it is possible to estimate parameters of the model using

maximum likelihood as an alternative to the Euler equation type equilibrium condition.

Artuc (2009) develops a model based on Cameron, Chaudhuri, and McLaren (2007) but
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uses a very different maximum likelihood based estimation strategy, similar to the structural

discrete choice models in labor economics literature, such as Keane and Wolpin (1994). The

main advantage of maximum likelihood over Euler-equation approach is its flexibility to allow

a richer treatment of worker heterogeneity and its efficiency (smaller standard errors when

sample size is small). However, maximum likelihood based methods are more computation

intensive and require calculation of future value functions accurately. In order to calculate

value functions accurately, the econometrician needs long time series, especially if sector

specific value functions fluctuate over time because of economic instability or substantial

policy changes. This requirement of value function calculation prevents maximum likelihood

based methods from being useful for transition and developing economies, where detailed

and long labor force surveys are usually unavailable, or data is contaminated with frequent

aggregate shocks.

Euler-equation approach does not require calculation of future value functions, therefore

it is robust to introduction of any type of aggregate shocks in the data without strict as-

sumptions about value functions. Thus the methods developed by Cameron, Chaudhuri,

and McLaren (2007), Chaudhuri and McLaren (2007) and Artuç, Chaudhuri and McLaren

(2007, 2008, forthcoming) can be easily applied to developing countries. Artuc and McLaren

(2009) demonstrate this technique on a data set from Turkey. In particular, they use a very

limited data set – a worker survey with modest sample sizes and only three years of data.

Nonetheless, structural parameters of the labor adjustment process can be easily estimated

and a rich variety of questions can then be explored using convenient simulation methods.

They thus show that a well-grounded analysis of the dynamic response to trade shocks can

be accomplished quite easily, without much computer power and with very modest data.

In this paper we show how the Euler-equation and maximum likelihood based methods

perform using different sub-samples from a simulated data set. Although we do not perform

any rigorous econometric tests to compare these two methods, we hope that the example

estimations provided in this paper will shed some more light on strengths and shortcomings

of these methods. We pick underlying structural parameters to simulate a 200 year long
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data set. Then we draw sub-samples from this data set, from different years and of different

lengths and sizes. Then we estimate the structural parameters from these sub-samples using

maximum likelihood and Euler equation based methods. Finally we simulate a trade policy

shock using different estimates to check whether the simulation results are robust to different

estimation methods using different sub-samples.

1 A Summary of the Model.

The model is developed in detail in Cameron, Chaudhuri, and McLaren (2007) and Chaud-

huri and McLaren (2007). Essentially, the basic model is a Ricardo-Viner trade model with

the addition of costly inter-industry labor mobility.1 The essential idea can be summarized

as follows. Workers can always change their sector of employment, but must incur costs to

do so. At the same time, each individual worker faces time-varying idiosyncratic shocks that

either make it either costly for that worker to change sectors, or, at times, costly not to

change sectors. As a result, a certain fraction of workers are always changing sectors – the

labor market exhibits gross flows. When a trade shock hits a sector adversely, the workers

whose idiosyncratic moving costs are currently low leave the sector while those currently

with high moving costs wait. This induces gradual adjustment to a trade shock. It also

implies that option value is important in workers’ utilities, as each worker is aware that no

matter what sector he or she is in at present, there is some probability that he or she will

choose to move to another sector in the future.

1.1 Basic setup

Consider an n-good economy, in which all agents have preferences summarized by the indi-

rect utility function v(p, I) ≡ I/φ(p), where p is an n-dimensional price vector, I denotes

1In principle, the model can accommodate geographic as well as inter-industry mobility. Instead of n

industries, we could have n industry-region cells, for example; all of the logic below would carry through

without amendment. In practice, we have limited the discussion to inter-industry mobility because we have

not found enough inter-regional mobility in the data to identify the parameters of interest.
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income, and φ is a linear-homogeneous consumer price index. Assume that in each industry

i there are a large number of competitive employers, and that their aggregate output in

any period t is given by xi
t = X i(Li

t, K
i, st), where Li

t denotes the labor used in industry

i in period t, Ki is a stock of sector-specific capital,2 and st is a state variable that could

capture the effects of policy (such as trade protection, which might raise the price of the

output), technology shocks, and the like. Assume that X i is strictly increasing, continuously

differentiable and concave in its first two arguments. Its first derivative with respect to labor

is then a continuous, decreasing function of labor, holding Ki and st constant. Assume that

s follows a stationary process on some state space S.3

The economy’s workers form a continuum of measure L. All workers are homoge-

neous, and each of them at any moment is located in one of the n industries. Denote

the number of workers in industry i at the beginning of period t by Li
t. If a worker, say,

l ∈ [0, L], is in industry i at the beginning of t, she will produce in that industry, collect

the market wage for that industry, and then may move to any other industry. In order

for the labor market to clear, the real wage wi
t paid in industry i at date t must satisfy

wi
t = (pi

t(st)/φ(pt(st))) (∂X i(Li
t, K

i, st)/∂Li
t) at all times, where the pi

t(st) are the domestic

prices of the different industries’ outputs and may depend on st as, for example, in the case

in which st includes a tariff.

If worker l moves from industry i to industry j, she incurs a cost Cij ≥ 0, which is the

same for all workers and all periods, and is publicly known. In addition, if she is in industry

i at the end of period t, she collects an idiosyncratic benefit εi
l,t from being in that industry.

These benefits are independently and identically distributed across individuals, industries,

2Adjustment of capital over time is obviously important, but in this study we set it aside to focus on

labor.
3We need to allow for shocks to sectoral labor demand to estimate the model, because otherwise the model

would predict that all aggregates would converge non-stochastically to a steady state over time. Obviously,

the data do not behave in that way, because of ongoing aggregate shocks. However, these exogenous shocks

to labor demand are a distraction from our questions of interest and would generate enormous computational

difficulties in simulations, so we drop them in our simulation exercises.
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and dates, with density function f : % &−→ %+, f(ε) > 0∀ε, and cumulative distribution

function F : % &−→ [0, 1]. Without loss of generality, assume that
∫

εf(ε)dε ≡ 0. Thus, the

full cost for worker l of moving from i to j can be thought of as εi
l,t − εj

l,t + Cij. The worker

knows the values of the εi
l,t for all i before making the period-t moving decision.4 We adopt

the convention that Cii = 0 for all i.

Note that the mean cost of moving from i to j is given by Cij, but its variance and

other moments are determined by f . It should be emphasized that these higher moments

are important both for estimation and for policy analysis, as will be discussed below.

All agents have rational expectations and a common constant discount factor β < 1, and

are risk neutral.

An equilibrium then takes the form of a decision rule by which, in each period, each

worker will decide whether to stay in her industry or move to another, based on the current

allocation vector Lt of labor across industries, the current aggregate state st, and that

worker’s own vector εl,t of shocks. In the aggregate, this decision rule will generate a law

of motion for the evolution of the labor allocation vector, and hence (by the labor market

clearing condition just mentioned) for the wage in each industry. Each worker understands

this behaviour for wages, and thus how Lt and the wages will evolve in the future in response

to shocks; and given this behaviour for wages, the decision rule must be optimal for each

worker, in the sense of maximizing her expected present discounted value of wages plus

idiosyncratic benefits, net of moving costs.

To close the model, we need to determine the prices pi
t. We do this in two ways in two

different versions of the model. In the first version, all industries produce tradeable output,

whose world prices are determined by world supply and demand and are exogenous to this

model; the domestic prices pi
t are then equal to the world price plus a tariff. In the second

version of the model, a subset of the industries produce non-tradeable output, whose prices

4It is useful to think of the timeline as follows: The worker observes st at the beginning of the period,

produces output and receives the wage, then learns the vector εl,t and decides whether or not to move. At

the end of the period, she enjoys εj
l,t in whichever sector j she has landed.
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are determined endogenously. At each moment, the allocation of labor Lt determines the

quantity of each industry’s output, and hence the supply of each non-tradeable good; this,

combined with the prices of the tradeable goods, allows us to compute the price of each

non-tradeable good that equates domestic demand with that supply. Note that we do not

need to concern ourselves with any of these price-determination issues for the estimation of

the model, but we will need them later for the general-equilibrium simulation of the model.

1.2 The key equilibrium condition.

Suppose that we have somehow computed the maximized value to each worker of being in

industry i when the labor allocation is L and the state is s. Let U i(L, s, ε) denote this value,

which, of course, depends on the worker’s realized idiosyncratic shocks. Denote by V i(L, s)

the average of U i(L, s, ε) across all workers, or in other words, the expectation of U i(L, s, ε)

with respect to the vector ε. Thus, V i(L, s) can also be interpreted as the expected value of

being in industry i, conditional on L and s, but before the worker learns her value of ε.

Assuming optimizing behavior, i.e., that a worker in industry i will choose to remain at

or move to the industry j that offers her the greatest expected benefits, net of moving costs,

we can write:5

U i(Lt, st, εt) = wi
t + max

j
{εj

t − Cij + βEt[V
j(Lt+1, st+1)]} (1)

= wi
t + βEt[V

i(Lt+1, st+1)] + max
j

{εj
t + εij

t }

where:

εij
t ≡ βEt[V

j(Lt+1, st+1)− V i(Lt+1, st+1)]− Cij. (2)

Note that Lt+1 is the next-period allocation of labor, derived from Lt and the decision rule,

and st+1 is the next-period value of the state, which is a random variable whose distribution is

determined by st. The expectations in (1) and (2) are taken with respect to st+1, conditional

on all information available at time t.

Taking the expectation of (1) with respect to the ε vector then yields:

5From here on, we drop the worker-specific subscript, l.
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V i(Lt, st) = wi
t + βEt[V

i(Lt+1, st+1)] + Ω(εi
t), (3)

where εi
t = (εi1

t , ..., εiN
t ) and:

Ω(εi
t) =

N∑

j=1

∫ ∞

−∞
(εj + εij

t )f(εj)
∏

k #=j

F (εj + εij
t − εik

t )dεj. (4)

The average value to being in industry i can therefore be decomposed into three terms: (1)

the wage, wi
t, that a industry-i worker receives; (2) the base value of staying on in industry i,

i.e., βEt[V i(Lt+1, st+1)]; and (3) the additional value, Ω(εi
t), derived from having the option

to move to another industry should prospects there look better (and which is simply equal to

the expectation of maxj{εj + εij
t } with respect to the ε vector). We will call this the ‘option

value’ associated with being in that industry at that time. Note that, since εii
t ≡ 0, this is

always positive.

Using (3), we can rewrite (2) as:

Cij + εij
t = βEt[V

j(Lt+1, st+1)− V i(Lt+1, st+1)]

= βEt[w
j
t+1 − wi

t+1 + βEt+1[V
j(Lt+2, st+2)− V i(Lt+2, st+2)]

+Ω(εj
t+1)− Ω(εi

t+1)], or

Cij + εij
t = βEt[w

j
t+1 − wi

t+1 + Cij + εij
t+1 + Ω(εj

t+1)− Ω(εi
t+1)]. (5)

Note that εij
t is the value of εi − εj at which a worker in industry i is indifferent between

moving to industry j and staying in i. Condition (5) thus has the simple, common-sense

interpretation that for the marginal mover from i to j, the cost (including the idiosyncratic

component) of moving is equal to the expected future benefit of being in j instead of i at time

t + 1. This expected future benefit has three components. The first is the wage differential.

The second is the revealed expected value to being in industry j instead of i at time t + 2,

as revealed by the cost borne by the marginal mover from i to j at time t + 1, or Cij + εij
t+1.

The last component is the difference in option values associated with being in each industry.

Thus, if I contemplate being in j instead of i next period, I take into account the expected
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difference in wages; then the difference in the expected values of continuing in each industry

afterward; and finally, the differences in the values of the option to leave each industry if

conditions call for it.

1.3 The estimating equations.

Let mij
t be the fraction of the labor force in industry i at time t that chooses to move to

industry j, i.e., the gross flow from i to j. With the assumption of a continuum of workers and

i.i.d idiosyncratic components to moving costs, this gross flow is simply the probability that

industry j is the best for a randomly selected i-worker. Now, make the following functional

form assumption. Assume that the idiosyncratic shocks follow an extreme-value distribution

with parameters (−γν, ν):

f(ε) =
e−ε/ν−γ

ν
exp

{
−e−ε/ν−γ

}

F (ε) = exp
{
−e−ε/ν−γ

}
,

implying:

E(ε) = 0, and

V ar(ε) =
π2ν2

6
.

Note that while we make the natural assumption that the ε’s be mean-zero, we do not

impose any restrictions on the variance. The variance is proportional to the square of ν,

which is a free parameter to be estimated, and crucial for all of the policy and welfare

analysis.

By assuming that the εi
t are generated from an extreme-value distribution we are able to

obtain a particularly simple expression for the conditional moment restriction, which we then

plan to estimate using aggregate data. Specifically, it is shown in the web-only Appendix

to Artuç, Chaudhuri and McLaren (forthcoming) and in the Appendix to the 2007 working

paper) that, with this assumption:
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εij
t ≡ βEt[V

j
t+1 − V i

t+1]− Cij = ν[ln mij
t − ln mii

t ] (6)

and:

Ω(εi
t) = −ν ln mii

t (7)

Both these expressions make intuitive sense. The first says that the greater the expected

net (of moving costs) benefits of moving to j, the larger should be the observed ratio of

movers (from i to j) to stayers. Moreover, holding constant the (average) expected net

benefits of moving, the higher the variance of the idiosyncratic cost shocks, the lower the

compensating migratory flows.

The second expression says that the greater the probability of remaining in industry i,

the lower the value of having the option to move from industry i.6 Moreover, as the variance

of the idiosyncratic component of moving costs increases, so too does the value of having the

option to move. This also makes good sense.

Euler-Equation Approach

Substituting from (6) and (7) into (5) and rearranging, we get the following conditional

moment condition:

Et

[
β

ν
(wj

t+1 − wi
t+1) + β(ln mij

t+1 − ln mjj
t+1)−

(1− β)

ν
Cij − (ln mij

t − ln mii
t )

]
= 0. (8)

This condition can be interpreted as a linear regression:

(ln mij
t − ln mii

t ) = −(1− β)

ν
Cij +

β

ν
(wj

t+1 − wi
t+1) + β(ln mij

t+1 − ln mjj
t+1) + µt+1, (9)

where µt+1 is news revealed at time t+1, so that Etµt+1 ≡ 0. In other words, the parameters

of interest, Cij, β and ν, can then be estimated by regressing current flows (as measured by

(ln mij
t − ln mii

t )) on future flows (as measured by (lnmij
t+1 − ln mjj

t+1)) and the future wage

differential with an intercept.

The basic idea of the estimating equation (9) can be summarized as follows. We regress

current flows of workers from i to j on next-period flows in the same direction and on next-

period j-sector wages minus i-sector wages. If there are a lot of flows in all directions, that

6Note that 0 < mii
t < 1, so Ω(εi

t) = −ν lnmii
t > 0.
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implies a high value for the intercept of this equation, which in turn implies a high variance

for the idiosyncratic shocks ν relative to average moving costs Cij. On the other hand, for a

given overall level of flows, if those flows are very responsive to the expected next-period wage

differential, that implies a large slope coefficient in the regression equation, which implies a

low variance ν of the idiosyncratic shocks. That is how this simple regression can identify

the mean and variance parameters of moving costs. In practice, for this exercise, we will

constrain all average moving costs to be the same, or Cij = C∀i, j.

Maximum Likelihood Approach

Another, more conventional, way of estimating the model is using maximum likelihood.

Under the given distributional assumptions, the maximum likelihood estimator is called

”Logit” estimator.

The gross flow of workers from i to j at date t, mij
t , is equal to the probability that

a given i-worker will switch to j at date t, or the probability that, for an i-worker, utility

wi
t + εj

t + βEt[V j(Lt+1, st+1)]− Cij will be higher for a move to j than for any of the other

n− 1 options. In other words, from (2),

mij
t = Probεt

[
εij

t + εj
t ≥ εik

t + εk
t for k = 1, . . . , n

]
.

Suppressing the time subscript, this can be written:

mij =

∫ ∞

−∞
f(εj)

∏

k #=j

F (εj + εij − εik)dεj.

To get logit equation we simply follow steps in the appendix of Artuc Chaudhuri and

McLaren (forthcoming). Probability of a worker moving from i to j is expressed as

mij = exp(εij/ν)Pn
k=1 exp(εik/ν)

.
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Then maximum likelihood contribution of the worker k who is in sector dk
t at time t and

in sector dk
t+1 at time t + 1 is mdk

t dk
t+1 and the maximum likelihood estimator is

Λ = argmin
K∑

k=1

T∑

t=1

log mdn
t dn

t+1 ,

where Λ is the vector of parameters to be estimated such as ν and Cij and K is the total

number of workers in data.

2 Simulated Data.

We simulate a data set of 200 years and 6 sectors using exogenous aggregate wage series.

The sectors are 1. Agriculture and Mining; 2. Construction; 3. Manufacturing; 4. Trans-

portation, Communication, and Utilities; 5. Trade; and 6. All Other Services including

government. We use average wages from Current Population Survey normalized to one

similar to Artuc Chaudhuri and McLaren (forthcoming). We add mean zero normally dis-

tributed shocks with standard deviation 0.25 to wages, thus we end up with 200x6 normally

distributed aggregate wage observations. Finally we allow a time trend for Service wages so

that Service wages double by the end of 200 years, which is an average 0.5% real increase

per year.

After simulating exogenous wages we calculate value function as given by (3) with struc-

tural parameters taken from Artuc Chaudhuri and McLaren’s (forthcoming) basic model,

where β = 0.97, ν = 1.8 and Cij ≡ C = 0.65,∀i *= j. However for the last year (T = 200),

we assume that values are equal to wages

V i(LT , sT ) = wi
T . (10)

Thus one needs to start from year T = 200 and go backwards recursively in order to

calculate value functions accurately. If one starts from a previous year such as t = 199, it is

not be possible to calculate value functions correctly and the results can be unreliable if one
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uses a maximum likelihood based method. However, with the Euler-equation based method

one can pick any time interval since it does not rely on calculation of values.

3 Results.

Table 1 shows the results from the basic regressions with different sub-samples via Euler-

equation and maximum likelihood approaches. We should point out that we do not attempt

to estimate β. The model is not designed to estimate rates of time preference, and although

it could be done in principle, in practice it turns out that that one parameter is very poorly

identified and requires very long time series especially with the Euler-equation approach.

As mentioned above, we impose Cij ≡ C∀i *= j, so that the mean moving cost for any

transition from one industry to any other is the same. Throughout the table, the t-statistics

are reported in parentheses.

The first two columns report results for the Euler-equation method, and the last two

report results for the maximum likelihood method. The first row, ”I. Actual parameters

used in simulations,” show the underlying structural parameters used to generate simulated

data.

The second row, ”II. Last 30 years,” provides estimates from a subsample taken between

year 171 and 200. In particular we picked an average of 1000 individuals observations per

sector per year, thus ended up with 1000x6x30=180,000 observations total. Note that for

this subsample value functions can be calculated precisely since for the last year (T=200)

V i
T = wi

T . Thus there is no need to know the value function for t=201, and actually it does

not exist. For this sub-sample the maximum-likelihood based method performs extremely

well, the parameters are estimated precisely with very tight confidence intervals (it is very

efficient). The Euler-equation based method also does a satisfactory job but has much larger

standard errors.

The third row, ”III. Last 30 year excluding t=200,” shows estimates from a sub-sample

drawn between years 171 and 199. everything else is the same as the previous case. The
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Table 1: Comparison of Estimation Results with Simulated Data.

Euler-Equation Approach. Max. Likelihood Approach.

I. Actual parameters used in simulations

ν C ν C

1.800 6.500 1.800 6.500

II. Last 30 years.

ν C ν C

1.697 (15.6***) 6.853 (3.0***) 1.803 (55.2***) 6.515 (43.8***)

III. Last 30 years excluding t=200.

ν C ν C

1.685 (15.3***) 6.514 (2.7***) 1.653 (54.4***) 6.047 (43.3***)

IV. Last 5 years.

ν C ν C

2.062 (2.6***) 12.549 (1.3***) 1.731 (29.5***) 6.217 (23.7***)

V. Mid 30 years.

ν C ν C

1.813 (9.0**) 6.668 (4.1**) 1.558 (93.0**) 5.699 (76.6**)

VI. Mid 5 years.

ν C ν C

1.774 (3.5**) 4.995 (0.9**) 0.654 (47.2***) 2.479 (38.7***)

VII. Mid 30 years with small sample.

ν C ν C

1.921 (4.4***) 3.244 (0.8**) 1.426 (28.9***) 5.128 (23.7***)

VIII. Mid 5 years with small sample.

ν C ν C

3.700 (0.5***) -27.20 (-0.3***) 0.655 (14.7***) 2.490 (11.9***)

(T-statistics are in parentheses.

One-tailed significance: 1-percent***, 5-percent**, 10-percent*.)
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estimates show that now the maximum-likelihood approach is probably slightly biased. The

true values of parameters are outside of 95-percent confidence intervals. The estimates are

biased because now it is not possible to calculate value functions accurately and there is no

information available to the econometrician about year t=200. The Euler-equation based

method performs just as well as the previous case, and it is probably unbiased.

The fourth row, ”IV. Last 5 years,” shows estimates from a sub-sample drawn from the

last 5 years. There is again an average of 1000 individual observations per sector per year.

Now the maximum likelihood method performs better with much tighter confidence intervals

compared to the Euler-equation method.

The fifth row, ”V. Mid 30 years,” shows estimates using a sub-sample between t=71

and t=100. (Needless to say that everything else is same as case II.) Now value functions

can not be calculated accurately, similar to case III, and the maximum likelihood method

performs poorly compared to the Euler-equation method. Although the confidence interval

of maximum likelihood method is tight, it is very obvious that the estimates are biased. The

sixth case, ”VI. Mid 5 years,” is very similar but this time estimates are insignificant with the

Euler-equation method (but there is no evidence of a bias), and seems terribly biased with

the MLE method. Note that MLE method performs better with longer time series not only

because of more available observations but also because value functions can be calculated

more accurately.

The seventh and ninth cases are very similar to fifth and sixth cases, but this time we

have an average of 100 observations per sector per year. Now the aggregate mobility matrices

that are used in the Euler-equation method is contaminated with empty cells, and it fails to

get reasonable estimates. In the ninth case we find a negative and very large moving cost.

This shows that it is not possible to analyze small sectors with the Euler-equation method

(such as the metal manufacturing sector studied in Artuc (2009) ).

We re-estimate models presented in Artuc and McLaren (2009) (which uses Turkish data)

and Artuc Chaudhuri and McLaren (forthcoming) (which uses US data) using maximum

likelihood, i.e. ”Logit”. The results are presented in Table 2. We find that for the US data
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Table 2: Comparison of Estimation Results with Real Data.

β=0.97. β=0.90.

I. US Data with Euler-Eq. Approach

ν C ν C

1.884 (3.846***) 6.565 (3.381***) 1.217 (5.700***) 4.703 (5.626***)

II. US Data with MLE Approach.

ν C ν C

1.69 (53.9***) 6.579 (52.6***) 1.182 (54.5***) 4.601 (53.4***)

III. Turkish Data with Euler-Eq. Approach.

ν C ν C

2.56 (3.5***) 22.89 (3.2***) 1.62 (5.4***) 9.5 (5.4***)

IV. Turkish Data with MLE Approach.

ν C ν C

0.731 (29.2***) 3.372 (29.6***) 0.657 (29.4***) 3.031 (29.7***)

(T-statistics are in parentheses.

One-tailed significance: 1-percent***, 5-percent**, 10-percent*.)
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using MLE or Euler-equation estimation does not really matter, both results are very similar.

(Needless to say that Euler-equation method is less efficient because of aggregation). But for

the Turkish data the results are very different. This is difference might be partially due to

lack of availability of instruments because of short sample size for the Euler equation method.

But taking Table 1 seriously one should avoid using MLE when the sample is short. This is

especially more relevant for countries like Turkey since value functions might fluctuate more

sharply as Turkish economy is not as stable as the US economy.

4 Simulation: A Sudden Trade Liberalization.

After estimating the model presented in the previous sections, the estimates are used to study

the effect of a hypothetical trade shock through simulations. In this paper, we use different

estimates from Table 1 to illustrate effects of using different sub-samples and methods on

simulation results.

Note that for the estimations, the only functional-form assumption we needed was the

density for the idiosyncratic shocks, but to simulate the model we need to choose functional

forms (and parameter values) for production and utility functions as well. We assume that

each of the four sectors has a Cobb-Douglas production function, with labor and unmodelled

sector-specific capital as inputs. Thus, for our purposes, the production function for sector

i is given by:

yi
t = ψi

(
αi(Li

t)
ρi

+ (1− αi)(Ki)ρi
) 1

ρi

, (11)

where yi
t is the output for sector i in period t, Ki is sector-i’s capital stock, and αi > 0,

ρi < 1, and ψi > 0 are parameters. Given the number of free parameters and our treatment

of capital as fixed, we can without loss of generality set Ki = 1∀i. This implies that the

wages are given by:

wi
t = pi

tα
iψi(Li

t)
ρi−1

(
αi(Li

t)
ρi

+ (1− αi)
) 1−ρi

ρi

, (12)

where pi
t is the domestic price of the output of sector i.
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For simulations, we need to choose values of production-function parameters to provide

a plausible illustrative numerical example, broadly consistent with quantitative features of

the data. To do this, we set the values αi, ρi, and ψi to minimize a loss function given

our assumptions on prices. Specifically, for any set of parameter values, we can compute

the predicted wage for each sector and that sector’s predicted share of GDP using (12) and

(11) together with empirical employment levels for each sector and our assumptions about

prices as described below. The loss function is then the sum across sectors and across years

of the square of each sector’s predicted wage minus mean wage in the data, plus the square

of labor’s predicted share of revenue minus the actual share, plus the square of the sector’s

predicted minus its actual share of GDP. The values for calibration are taken directly from

Artuc Chaudhuri and McLaren (forthcoming), see their paper for details.

Then, to provide a simple trade shock, we assume the following: (i) Units are chosen

so that the domestic price of each good at date t = −1 is unity. (Given our available free

parameters, this is without loss of generality.) (ii) There are no tariffs on any sector aside

from manufacturing, at any date. (iii) The world price of manufacturing output is 0.7 at each

date. The world price of all other tradeable goods is equal to unity at each date. (iv) There

is initially a specific tariff on manufactures at the level 0.3 per unit, so that the domestic

price of manufactures is equal to unity. (v) Initially, this tariff is expected to be permanent,

and the economy is in the steady state with that expectation. (vi) At date t = −1, however,

after that period’s moving decisions have been made, the government announces that the

tariff will be removed beginning period t = 0 (so that the domestic price of manufactures

will fall from unity to 0.7 at that date), and that this liberalization will be permanent.

Thus, we simulate a sudden liberalization of the manufacturing sector. We compute

the perfect-foresight path of adjustment following the liberalization announcement, until the

economy has effectively reached the new steady state. This requires that each worker, taking

the time path of wages in all sectors as given, optimally decides at each date whether or not

to switch sectors, taking into account that worker’s own idiosyncratic shocks. This induces a

time-path for the allocation of workers, and therefore the time-path of wages, since the wage
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in each sector at each date is determined by market clearing from (12) given the number

of workers currently in the sector. Of course, the time path of wages so generated must

be the same as the time-path each worker expects. It is shown in Cameron, Chaudhuri

and McLaren (2007) that the equilibrium exists and is unique. The computation method is

described at length in Artuç, Chaudhuri and McLaren (2008), and programs for executing

the simulations are contained in the web-only appendix for Artuç, Chaudhuri and McLaren

(forthcoming). Simulations converge quickly and require modest computing power.

For the simulations we picked case VI (mid 5 years) and case VII (mid 30 years with

small sample) estimates as they look very different from the true values of the structural

parameters presented in case I (benchmark).

The simulation output is plotted in the Figures. Figures 1 and 2 show the time path of

the allocation of workers in the manufacturing and service sectors. We find that small sample

MLE performs better than the others and small sample Euler-Eq. approach seems particu-

larly inferior. Figures 3 and 4 show adjustment of wages in manufacturing and service sectors

while Figures 5 and 6 show changes in welfare in those two sectors, after the trade shock.

Similar to the adjustment of wages small sample MLE performs slightly better, and small

sample Euler-equation method performs the worst. Short sample Euler equation approach

seems to perform relatively good. This case is particularly important for application of this

method to developing countries. Although the numbers used in simulations look different

the qualitative implications are very robust. Please note that we particularly picked cases

which looked different from the true parameters. If we had picked case V (mid 30 years) and

plotted the figures for the Euler-Equation method, they would be indistinguishable from the

benchmark case.

5 Conclusion.

We find that maximum likelihood estimators are more efficient compared to the Euler-

equation based method introduced in Artuc Chaudhuri McLaren (forthcoming), however
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they might be biased if the value functions are not calculated accurately. Calculating value

functions accurately may not be possible if the data set is short or if there are aggregate

shocks. The Euler-equation based method perform very well as long as there are enough

observations per sector, so it is more reliable to use with developing country data which

are usually short and possibly more contaminated with aggregate shocks. We also showed

that although the estimated values are different with alternative sub-samples, the qualitative

results of the simulations are robust.
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